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Proximities in Statistics:
Similarity and Distance

Hans –J. Lenz 

Institute of Statistics and Econometrics, Freie Universität Berlin, Germany 

Abstract We review similarity and distance measures used in Statistics for clustering and 
classification. We are motivated by the lack of most measures to adequately utilize a non 
uniform distribution defined on the data or sample space. 
Such measures are mappings from O x O � R+ where O is either a finite set of objects or 
vector space like Rp and R+ is the set of non-negative real numbers. In most cases those 
mappings fulfil conditions like symmetry and reflexivity. Moreover, further 
characteristics like transitivity or the triangle equation in case of distance measures are of 
concern. 
We start with Hartigan‘s list of proximity measures which he compiled in 1967. It is good 
practice to pay special attention to the type of scales of the variables involved, i.e. to 
nominal (often binary), ordinal and metric (interval and ratio) types of scales. We are 
interested in the algebraic structure of proximities as suggested by Hartigan (1967) and 
Cormack (1971), information-theoretic measures as discussed by Jardine and Sibson 
(1971), and the probabilistic W-distance measure as proposed by Skarabis (1970). The 
last measure combines distances of objects or vectors with their corresponding 
probabilities to improve overall discrimination power. The idea is that rare events, i.e. set 
of values with a very low probability of observing, related to a pair of objects may be a 
strong hint to strong similarity of this pair. 

1 Introduction 

1.1 Frame of discernment 

First we present some types of objects which are considered later, i.e. tupels, 
vectors or records, sets and probability distribution functions. Of course, there 
exists a unified view in form of sets embedded into a Cartesian space, but it is 
helpful to look at them separately. 
Given a two-dimensional data space we can define several distances between 
two tupels. 
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   Fig.1: Distance d between two tupels 

A slightly different situation is given when two sets are to be compared. 

Fig.2: Distance dH between two sets 

It seems worthwhile considering a further case where two probability distribu-
tions are given. 

            
                       Fig.3: Distance d between two distribution 

functions
In the following we present some examples which will highlight some weakness 
of traditional proximity (“nearness”) measures when prior information is 
available.

1.2 Examples 

Our first example consists of a sample of five tupels xi� R2, i=1,2,…,5 with 
x1T= (1, 21); x2T= (0, 20); x3T= (1, 1); x4T= (0, 0); x5T= (1, 30). The Euclidean 
distance dE is used as a distance measure, i.e. dE(x, y) = (x – y)T(x – y) with x,
y� R2. We can easily compute dE(x1, x2) ��1,4 ;  dE(x3, x4) �1,4 ;  dE(x2, x5) ��10.  
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Fig. 4: Sample Space 

Assume now that the data are normally distributed with X, Y ~ N(0, 1). We 
observe that observations x3, x4 are equal or „near” to the centre �T = (0, 0) of the 
distribution. Their distance is dE(x3, x4) ��1,4. The same distance is computed for 
the first two tupels x1, x2, which may be considered as outliers due to their very 
large second component. However, if we compare another “outlier pair”, i.e. (x2,
x5) we notice that the Euclidean distance dE increases to dE(x2, x5) ��10. To the 
best of the author’s knowledge Skarabis (1970) was the first to point to this 
phenomenon.  
We present a further example to stress the necessity for including probabilities of 
observations besides of the dissimilarities when comparing pairs of objects. We 
consider only one (Boolean) attribute and n = 4 objects: x1= 1; x2= 1; x3= 2; x4=
2. The semantic of the random variable X (“Behaviour in winter time”) becomes 
important. X=1 is the code of “Take a bath in an icy lake in winter” while X=2
stands for “Take a warm coat”. Assume that each observation xi,
i = 1,2,3,4, is linked to one and only one person. Pair wise comparisons of 
persons o1, o2 and o3, o4 by a Hamming distance dH(xi,xj) = �xi - xj�, say, delivers 
dH(x1,x2) = dH(x3,x4) = 0. We induce that both pairs are equally similar. However, 
the probabilities of both values are generally very different due to P(X=1) << 
P(X=2), i.e. only few people use to take a outdoor bath in the winter time but 
almost all wear warm clothes at winter time. It is exactly this low probability 
which makes the first pair more similar to each other than the second one. This 
effect motivated Skarabis (1970) to define a probability – based distance 
measure dw which should fulfil dW(x1, x2) < dW(x3, x4).
As a further example, take text mining which is mostly corresponding to a 
classification problem. As Frakes and Baeza-Yates (1992) point out words that 
occur extremely rarely are likely to be of no statistical relevance and thus may be 
dropped. Now assume one detects in two documents about movies the term 
“superkalifragilistic exialidocious”. Such words are artificial, extremely low 
frequent but very informative because they give a strong hint to the movie “Mary 
Poppins” to which the documents may refer to. How can one incorporate such 
prior knowledge into a proximity measure? 
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2 Similarity and Distance measures 

A common way to measure dissimilarity between objects or numeric vectors of 
measurements defined on a data space X is to use distance functions. A minimal 
characteristic is that a distance function d - as well as similarity function s – 
should have a non negative range d(x,y) � 0 and be self similar, i.e. d(x,x) = 0. 

Def.1: A measurable function d: X2�R�0 where X is an arbitrary set, is called a 
distance (metric)  iff for all x, y, z���X we have: 

1. d(x, y) = 0 � x = y    (reflexive) 
2. d(x, y) = d(y, x)        (symmetric) 
3. d(x, z) 	 d(x, y) + d(y, z)        (triangle inequality). 

In Def.1 we note that relaxing 3. by d(x, z) 	 max{d(x, y), d(y, z)} 	 d(,x y) + d(y,
z)  leads to ultrametricity which is commonly used in science, cf. Murtagh 
(2007). Hartigan (1967) published a list of  twelve possible proximity measures 
which are reprinted in Cormack (1971) and Cox and Cox (2001). His list 
includes metric, real-valued, symmetric real-valued, Euclidean distances and 
various kinds of complete or partial orderings as well as partitions of X2. As 
these measures strongly depend on the underlying scales of the variables 
involved, we are going to present them accordingly, i.e. separated according to a 
nominal or even binary, ordinal and metric (ratio or interval) scale. 

2.1 Nominal or Binary Scales 

Sneath and Sokal (1973), Hubálek (1982) and Cox and Cox (2001) give a 
comprehensive table of similarity coefficients for binary data. Roughly speaking, 
similarities are derivable from related distances. Using a parametric measure of 
similarity one can represent most of those coefficient by one generalized 
formula. For this purpose we consider the following frequency table: 

Table 1: Frequency table of two binary attributes 

dc0

ba1

01Object s 
Object r
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We use the parametric similarity coefficient as used by Steinhausen and Langer 
(1977). Let 
, � � R, 
 � 0, 0 	 � 	 1 and )(/()(,

, cbdadaS sr ���� 
��
� . For 
example, it follows the Jaccard-Tanimoto coefficient Sr,s

JT= a/(a+b+c) for 
=1, 
�=0, the Rogers and Tanimoto coefficient Sr,s

RT= (a+d)/(a+2(b+c)+d) for 
=2, 
�=1, the simple matching coefficient Sr,s

sm = (a+d)/(a+b+c+d) for 
=1, �=1 etc.   

2.2 Ordinal Scales 

Variables are called ordinal scaled if the relational operators ‘=’, ‘�’, ‘<’, and ‘>’ 
are feasible. This implies that the operators ‘min’ and ‘max’ are applicable, too.  
There a three alternatives how to handle variables which have ordinal scales. 
First, reduce the ordinal scale to a nominal one. In this case one accepts a loss of 
(ordering) information. Second, one can use Gower’s (1971) general similarity 
coefficient (“average possible similarity”) Sr,s

G = (��rsi srsi)/ ��rsi, where srsi is 
the similarity between the rth and sth object based on the ith variable alone and 
�rsi is an indicator function with �rsi = 1 if the rth and sth object can be compared 
on the ith variable �rsi = 0 if not. Finally, one can use ranks instead of 
measurements for each variable l =1,2,…,p. The sample (xi)i=1,2,…,n is sorted in 
ascending order, i.e. x[1]	 x[2] 	…	 x[n]. The rank ri is the position of object i in 
the order statistic (x[i])i=1,2,…,n, i.e. Rank(xi)= ri = k if xi = x[k]. Let yil = ril/nl

appropriately scaled ranks with yil � [0,1] and nl is the number of ranks. The   
“Canberra-Metric” applied on ranks is proposed, cf. Steinhausen and Langer 
(1977), which is scale-invariant. 

�
 �

�


p

l jlil

jlil
ji yy

yy
yyd

1

),(                         (1)

2.3 Metric Scales

If the measurements are metric scaled, i.e. ratio or interval scaled - dependent 
upon the existence of an absolute zero, one usually represents the measurement 
vectors (x1,x2,…,xn) of a sample of size n as tupels (“points”) in the p-
dimensional space Rp of real numbers. Like in the qualitative case a lot of 
dissimilarity measures are proposed.  

2.3.1 Distance Measures in Statistics 



166 H-J. Lenz

The most important parametric family of distance measures is the Minkowski 
metric which is defined as follows:

At least, three special cases are important: 

k=1:    Manhattan distance (city block distance) �


�
p

l
llyx

1
1 ),( yxd

k=2:    Euclidean distance � �
2/1

1

2
2 yx),(d ��

�

�
��
�

�
� �



p

l
llyx

k��: maximum distance d�(x, y)=max l=1,...,p |x
l
- y

l
|.

These distances correspond to different kinds of neighbourhood which is 
illustrated in the following diagrams. 

Fig.5a: k=1 Fig. 5b: k=2      Fig.5c: k��

The family of Minkowski metrics has the following main features: 
� translation invariance, i.e. dk is not affected by a 

translation 
x � x + c, where c � Rp not scale invariant nor 

dimensional-free
� not sensitive to non-uniform probability 

distributions on Rp; invariant to orthogonal linear 
transformations.

Skipping further distance measures like Canberra metric, divergence coefficient, 
cosine distance etc., cf. Cox and Cox (2001) , we turn to the Mahalanobis 
distance (1936). The distance measure is dimension-free, invariant with respect 
to orthogonal transformations and is further scale-invariant.  

Def. 2: Let x, y � Rp be random vectors and � the corresponding covariance 

matrix. Then  

(2)

(3)

k
kp

l
llk yx /1

1

)(),( �


� yxd

)()()(d 1
M yx�yxyx, T �� �
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is called Mahalanobis distance.  
This measure is influenced not only by the difference (x – y), but by the 
variances and correlation of the corresponding variables, too. The covariance 

matrix is defined by T
l

l
lXY yx

n
))((

1

1 �� ��
�

 �� and the mean vector by 

�
l

lxμ
n

1
. Evidently, the Mahalanobis distance depends upon the distribution 

PX on Rp only by the first two moments, i.e. the covariance matrix �  and – 
indirectly - the mean �..
Contrarily, the Kullback-Leibler divergence dKLof two distributions P1 and P2 on 

R
p
 measures the mean information given observation x� R

p
 to separate P1 and 

P2, c.f. Kullback (1959). 

Def. 3: Let P1 and P2 be two probability distributions with Radon-Nikodym 

densities )(xp
d

dP
i

i

i 



 for i=1,2. Then  

is called Kullback-Leibler divergence. The Mahalanobis distance and the 
Kullback-Leibler measure are equivalent under the specific assumptions of 
Gaussian distributions and equal covariance matrices, cf. Skarabis (1971). 
Lemma 1: Let the data space R

p
 with x, y ~ N(�i, �i) � Pi for i=1,2. Furthermore 

assume that �1 = �2. Then )()(),( 21
1

2121 μμ�μμ T �� �PPdKL .

Instead of a distance measure it is often more convenient to use a similarity 
measure. It can be derived by any (non-linear) monotone non-increasing 
mapping. Analogue to distances one can define 

Def. 4: A measurable function s: X2�R[0,1] where X is an arbitrary set, is called 
a similarity measure iff for all x, y, z�X

� s(x,x) =1    (self-similarity) 
� s(x,y) = s(y,x)    (symmetry) 
� s(xi,yj) = 1 � oi=oj   (object identity) 

xd
x
xxxKL 


)(

)(
log))()((),(

2

1
2121 p

p
ppPPd � � (4)
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� s(x,z) 	 s(x,y) s(y,z) /(s(x,y)+s(y,z)) (analogue to triangle 
inequality) 

As is well known it is difficult in some applications to establish symmetry as 
well as transitivity of s. As intuitively a great similarity means a small distance 
between two objects there exist a large set of transformations for switching from 
distances to similarity and vice versa, cf. Steinhausen and Langer (1977) and 
Borgelt (2006). For example, d = 1 - s or d = (1-s)1/2 may be such mappings. 

2.3.2 Point wise Distance Measures 

Another area of application of similarity or distance measures comes up when 
pairs of functions or probability distributions are to be compared. There exist two 
principles for deriving appropriate measures: One can make a point wise 
comparison (“supremum-norm”) or one can use the area (“integral norm”) 
between both functions. We start with the first group. 
Assume that we have to compare a given distribution function F0 with an 
empirical frequency distribution Fn which is defined by 

By definition both functions are monotonically non-decreasing. Then the 
Kolmogorov-Smirnov distance measure dKS  is given by 

},max{)()(sup ��� nnnKS DDxFxFd where ))()(max( xFxFD nn �� and

))()()(max( xFxFxFD nnn �� .  Fig. 6 illustrates the KS-measure for 

the case above. 

Fig. 6: Kolmogorov-Smirnov distance 
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Evidently, the distance is measured at one and only one point in the domain R,
i.e.
arg sup �Fn(x)-F(x) ��0.459. 
Another idea is to measure the distance between two non empty point sets of 
some metric spaces. This approach was proposed for instance to discriminate 
between membership functions used in fuzzy logic, cf. Kruse and Meyer (1987). 
Let (X , dX ) be a metric space. We first define the distance between a point x �
X and the non empty set A  X by ),(inf),( AxdAxd x

Aa
h �

 . Then applying 
dH to both non empty sets A, B  X  we get 

Def.5: Let A, B  X . The distance measure  
)},(d),,(max{d)(d **

H ABBAA,B 
where ),(sup),(* BaBAd H

Aa
d

�
  is called Hausdorff metric.  

There exists a draw back of dH when being applied to two parameterised curves.  
As mentioned above dH measures the distance between sets of some metric 
space. So it discards the parameterisation and is applied to the range or image set 
of both curves. This can lead to the nasty side effect of a low distance between 
two curves while they appear to be quite different from visual inspection as 
shown in fig. 6, cf. the distance value �.

Fig. 7: Hausdorff metric dH applied to two curves

In 1906 Frechét introduced a pseudo-metric which is more appropriate for 
functions with a finite number of parameters. The Fréchet distance can be 
illustrated as follows. Suppose a man is walking his dog and that he is 
constrained to walk on a curve and his dog on another curve on a plane. Let both 
the man and the dog control their speed independently. They are not allowed to 
go backwards. Then, the Fréchet distance of the curves is the minimal length of a 
leash that is necessary. More formally, we have, cf. Godan (1991): 

(5)
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Def.5: Let f: A�X and g: B�X be continuous mappings , (X, dX) a metric space 
and let A, B  Rd be homeomorphic to [0,1]d for fixed dimension d�N. Let !:
A�B be an orientation preserving homeomorphism. Then 

    )))((),((supinf),( xgxfdgfd F !
! Ax

F
�

                (6) 

is called Fréchet distance of  f, g.
As an example we take d = 1 and consider two (polygonal) curves. We use a 
linear function !. The Fréchet distance dF is marked. 

Fig. 8: Fréchet distance dF

The following point wise distance measure receives a lot of attention in the 
asymptotic theory in Statistics. It is originated by Levy (1937) and is specially 
tailored to measure distances between not strictly but monotonically increasing 
functions, i.e. probability distribution functions. 

Def. 6: Let F, G be continuous distribution functions. Then 
})()()(inf{)( RL xallforxFxGxFGF,d ���		�� """""                    (7)

         (7) 
is called Levy distance between F and G.

Rewriting (7) we get 
# $""""" ��		% )G(xF(x)--G(x:0infsup)G,F(d L . It can be easily 

shown that 
&2 dL(F,G) is the maximum distance between F and G taken under an angle of 
45o, cf. Fig. 9. 

dF
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Fig. 9: Levy distance between distribution functions F, G

2.2.3 Distances based on Integral Norms 

While the distance measures discussed so far measure the distance between two 
monotone increasing functions F and G “point wise” there exists a broad 
spectrum of competitors which make use of  “ integral norms”. 

Def.7: Let F be a proper distribution function with related density function f, Fn a 
sampled corresponding empirical distribution function and ' a finite-parameter 
weighting function. Then an integral based distance is given by 

( ) dxxfxxFxFFFd nnInt )()()()(),(
2

'�
�

�

�                                           (8)                         

It is worthwhile considering at least two special cases: 

Selecting the weighting function 1))](1)(([)( �� xFxFx' one gets the  

Anderson - Darling distance � �
�


R

n dxxf
xFxF

xFxF
nA )(

))(1)((

))()(( 2
2 , and using '(x)=1 

the Cramér-von-Mises  distance � �
R

n dxxfxFxFnQ )())()(( 2 .

&2 dL(F,G)
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3 W-Distance 

Now, we come back to the example presented in the introductory section 1.2. 
The main message of the example was that two people who go swimming in an 
icy lake are more similar than a pair who is wearing warm winter clothes during 
winter time. Roughly speaking, two objects or people are more similar than 
another pair if their features coincide with values which have a low probability. 
Or the other way round: Observing rare values of objects is a stronger indication 
of similarity between a pair than to observe values which always happen. 
Evidently, the utilisation of such prior information should improve to determine 
an appropriate similarity or distance coefficient. 
As proposed by Skarabis (1970) the first step is to construct a complete quasi 
order (X2, �� ) based on a distance d and a probability distribution P, where X

*R and |X| < �:

Having constructed Ld,P appropriately, one can compute the predecessor set Mij

of each pair (xi, xj)
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The distance of a pair wise observation (xi, xj )�X2 is measured by the 
probability of the set of all its ’ �� ‘- predecessors. We can now define the W-
distance, a shorthand notation for a probability (“Wahrscheinlichkeit”) based 
distance.

Def. 8: DEF.: Let X * R and |X| < �. Then dW: (X2,� �� ) � R[0, 1] with dW(xi, xj)
= PX(Mij) is called W-distance on X.

This measure has the following properties, cf. Skarabis (1970): 

� symmetric: dW(xi, xj) = dW(xj, xi)

� normalized: dW(xi, xj) 	 1 

� the triangle inequality not (generally) fulfilled – depending upon PX

� dimension free. 
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3.1 Unordered Set X

We apply now the dW to example no. 1 which is characterised by the triple (X,
PX, dX). We let X = {1, 2} where 1�„take a bath“, and 2�„take a coat“  
(exclusive values).  The distance dX is simple indicator function, i.e. dX(x, y)=1 if 
x=y and dX(x, y)=0 else. The probability distribution PX on X is given by 

          Table 2: probability distribution PX on X

Then the quasi order (X2, �� ) can be determined as follows where Ld,P = L1 3
L2.
The W-distance value for a pair who takes an icy bath is small and is given by  

Contrarily, the W-distance value  for a pair who wears a warm coat in winter 

time is high 

By definition, all other pairs (xi, xj) with unequal observations, xi � xj, have dw(xi,
xj) = 1. 
Moreover, due the small cardinality of X the sets Ld,P = L1 3 L2 can be 
completely enumerated. 

Finally, the complete quasi order (X2, �� ) is given by  

0,990,01PX(x)

x2 =2x1 = 1x�X
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One can summarize the computation of the W-distance for unordered sets X as 
follows: 

              
1

)(
),( )(

2
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ji
xpredk

kX
jiW xxallfor
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xxd i �
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+
0
1


�

�                                          (9)

where the set of predecessor pairs of xi is given by 
# $)()(:)( iXkXi xPxPkxpred 	� N

for all i=1,2,….,n . 

3.2 One-dimensional Metric Space X

We use as basic distance measure d a special form of a city block distance, i.e. 
d(x, y) = �x - y� for all x, y� X=R. Therefore such problems are described by the 
triple (R, PX, d).
As done before a (complete) preorder (R 2,� �� ) is constructed for induced 
similarity of pairs (x, y) of observations, however, this time the information from 
the basic distance measure d as well as from the distribution PX is utilized as 
follows: 
The dW-distance is given by 

We see that the W-distance is just the probability of the predecessor set of the 
current pair (xi, xj) including this pair itself. Because of the preorder (X2,� �� ) we 
have again with Ld,P=L13L2.

Therefore the pair (xk, xl) is more similar to each other than this is the case for (xi,

xj) if ��
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, � L1 or L2. This means that either dkl < dij or if the basic (city 

block) distances are equal, i.e. dkl = dij, then the inequality of probabilities, 
PX((xk, xl)) 	 PX((xi, xj)) becomes true. 
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We close with a final example. We consider the space X={0,2,3}* R. Assume 
for simplicity that we can apply on X 2 the (basic) city block metric d(xi,xj) = dij =
�xi - xj�. Then we determine the following distance matrix D = (dij) for all possible 
pairs of observations: 

Table 3: Basic Distance Matrix D

Assume that the following non uniform joint distribution 2X
P  on X2  is given: 

Table 4: 2X
P  on X2

We can compute in a straighforward manner the complete preorder (X2,� �� ) on 
X2

From D and 2X
P  we can easily derive distances like dW((3,3)) = 1/10 < dW((2,2)) 

= 2/10 < dW((2,3))=1. The last inequality is true because tupel (2,2) � (2,3) and 

therefore 13
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3.3 W-distance in Xp

We turn finally to the case where all observations xi, i=1,2,…,n, are p-tupels, not 
necessarily real vectors. A response or measurement vector gets relative to a 
prototype a small distance value if all its components are relatively small. 
Therefore we can define the W-distance analogue to the univariate case for all 
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pairs of p-tupels, (xi, xj)
T� Xp x Xp:

As Skarabis (1970) proposed we can construct a complete preorder (Xp x Xp,
�� ) in order to determine the set of predecessors: 

If we define for each vector xi its l-th element by xi l , l =1,2,…,p, we can 
consider component-wise W- distances ),( jlil

l
ij xxd for all l=1,2,…,p. Of 

course, the basic distance used to construct dW strongly depends upon the scale 
of measurements, i.e. nominal, ordinal or metric. Aggregation of the W-distances 

),( jlil
l
ij xxd is performed by multiplication as Skarabis (1971) proposed.  

Evidently, other combination rules can be thought of. 
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A Snapshot on Reasoning with
Qualitative Preference Statements in AI

Carmel Domshlak

Faculty of Industrial Engineering and Management, Technion, Israel

Abstract Preference elicitation is a well-known bottleneck in decision analysis and de-
cision automation tasks, especially in applications targeting lay users that cannot be
assisted by a professional decision analyst. Focusing on the ordinal preferences of the
users, here we discuss the principles that appear to underly various frameworks devel-
oped in the AI research for interpretation and formal reasoning about sets of qualitative
preference statements.

1. Introduction

The ability to make decisions and to assess potential courses of action is a
corner-stone of numerous AI applications, including expert systems, autonomous
agents, decision-support systems, recommender systems, configuration software,
and constrained optimization applications (e.g, see [13, 14, 32, 37]). To make good
decisions, we must be able to assess and compare different alternatives. Some-
times, this comparison is performed implicitly, as it is done in some recommender
systems. However, explicit information about decision-maker preferences should
be communicated to the decision-support system.

At first view, the conceptual foundations to support such decision-aid tools
should be abound—the field of decision theory and its companion methodology
of decision analysis deal with making decisions and evaluating their quality. As
developed over some 50 years, these disciplines have provided many powerful
ideas and techniques, which exert major influences over the biological, cognitive,
and social sciences.

Unfortunately, in spite of these remarkable achievements, the tools of tradi-
tional decision theory have not proven fully adequate for supporting recent at-
tempts in artificial intelligence (AI) to automate the process of decision making.
While there are several reasons for such a gap between theory and practice (e.g.,
see an excellent discussion of this issue by Luce and Raiffa [35] back in 1957), we
believe that the Achilles heel of the traditional decision theory is the amount and
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form of the information that the decision maker needs to communicate regarding
her preferences.

In classical decision theory and decision analysis a utility function is used to
represent the decision-maker’s preferences. Utility functions are a powerful form
of knowledge representation. They provide a quantitative measure of the desir-
ability of different outcomes, capture attitude toward risk, and support decision
making under uncertainty. However, the process of obtaining the type of informa-
tion required to generate a good utility function is time-consuming and requires
considerable effort on the part of the user. In some applications, this effort is
necessary and/or possible, e.g., when uncertainty plays a key role, and when the
decision-maker and the decision analyst are able and willing to engage in the re-
quired preference elicitation process. One would expect to see such effort invested
when medical or important business decisions are involved. However, there are
many applications where either uncertainty is not a crucial factor, or the user can-
not be engaged for a lengthy period of time (e.g., in on-line product recommen-
dation systems), or the preference elicitation process cannot be supported by a
human decision analyst and must be performed by a software system (e.g., due
to replicability or mass marketing aims). In many such cases, direct elicitation of
a good (even ordinal) utility function is not a realistic option; the traditional ap-
proach provides little help for decision makers who (for these or other reasons)
exhibit discomfort with numerical evaluation of lotteries and/or outcomes. This
shortcoming has been precisely formulated by Doyle and Thomason [21]: ”Tra-
ditional decision theory provides an account of the information that, in principle,
suffices for making a rational decision. In practice, however, the decision maker
might have never considered the type of choice in question and so might not hap-
pen to possess this information.”

But if direct eliciting of a good utility function is not a realistic option in our ap-
plication, then what is? When a utility function cannot be or need not be obtained,
we may resort to other, more qualitative forms of information communicating user
preferences. Ideally, this qualitative information should be easily obtainable from
the user by non-intrusive means. That is, we should be able to generate it from
natural and relatively simple statements about preferences obtained from the user,
and this elicitation process should be amenable to automation. In addition, auto-
mated reasoning with this information should be both semantically reasonable and
computationally efficient.

In this paper we aim at sketching a general scheme for reasoning about user
preferences that unifies treating this cognitive paradigm with the way other cog-
nitive and computational paradigms are treated in the AI research. We then try to
identify the limitations of such a general scheme, pointing on some of its shortcom-
ings that unavoidably should be addressed in practice. Both the general scheme, as
well as bypasses of its shortcomings, are then illustrated on two principle method-
ologies and their instances.
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Figure 1: The AI approach to reasoning about preferences.

2. The AI approach: Models + Languages + Algorithms

In many senses, reasoning about user preferences bare similarity to many other
problems faced by the AI research, and thus we may try dealing with user prefer-
ences in a way AI aims at treating other cognitive and computational paradigms.
The general scheme underlying the AI approach has three major components:

1. mathematical models to concretize, understand, and classify various cog-
nitive paradigms,

2. languages for describing models conveniently,

3. algorithms for answering queries about these models as efficiently as pos-
sible.

To allow a system to reason about user preferences, the user should realize to
herself her preferences as an instance of the model, and communicate this model
instance in the (agreed-upon) language to the system. Figure 1 illustrates this
scheme along with some examples for models, language(s), and queries about user
preferences the system may have to answer.

On the positive side, the foundations of decision theory suggest that we can re-
strict ourselves to models constituting (possibly partial, possibly weak) orderings
over the space of alternatives1.

While the concept of model in preferential reasoning is rather clear, the choice
of language is much more open, and this due to numerous reasons. Suppose we
adopt a language lying closest possible to our model of user preferences, that is,
the language of pairwise comparisons between possible alternatives. The good
news are that this type of information poses no ambiguity on its interpretation

1When reasoning under certainty, the alternatives constitute concrete outcomes of the decisions,
while in reasoning under uncertainty, the alternatives constitute, e.g., lotteries over such outcomes. In
this paper we restrict ourselves to discussing reasoning under certainty, and thus the former perspective
suffices.
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(and later we’ll show that these are good news). Thus, if the number of generally
acceptable alternatives is small, then adopting such a language appears appealing.
This language, however, do not “scale” well to applications in whose the number
of acceptable alternatives is larger than trivial. As an example, imagine yourself
sending your web-agent to look for a used car for you on the web. Even if there
are only some 100 car configurations that you are ready to accept, specifying an
ordering over 100 alternatives is not a walk in the park. Typically, however, we
have no such strict “threshold” on acceptability, and thus we’ll have to specify an
ordering over a sea of manufactured, used, and sold car configurations.

So what are other alternatives for qualitative preference specification languages?
While explicit ordering specification as above might be infeasible due to both time
and cognitive effort required from the user2, our everyday practice shows that users
are capable of providing generalizing statements of preference such as

- “I like ecologically friendly cars”,

- “For a sport car, I prefer red color over black color”,

- “This car would be better in red”.

Assuming the preferences of the users are not entirely unsystematic, one would
expect a relatively compact set of guidelines structuring (at least the core of) the
user’s preferences. Given that, it is only natural to assume that by such generalizing
statements of preference the user will aim at communicating to the system exactly
these guidelines.

Note also that generalizing statements refer not (only) to alternatives, but to
the properties of the alternatives. To do anything with statements over properties,
both the user and the system should consider the alternatives not as monolithic
entities, but as compound objects drawn from some combinatorial space. This
property-based perspective is typically natural to the users—when choosing a used
car to buy, we implicitly consider each car as a composition of its model, age, color,
number of previous owners, accidents history, etc. And targeting this perception of
the users, the systems also represent and keep track of the objects of users’ interest
in terms of this or another attribution , by that effectively
abstracting the alternatives’ space to Dom .

Taking now a closer look at the general scheme depicted in Figure 1, it appears
that the scheme complicates when facing the realm of real users. The lessons
learnt in the areas of psychology, philosophical logic, AI, and information systems
indicate at least four major obstacles to operationalising this scheme in practice as
is:

2To illustrate the potential cognitive issues with ordering realization, recall yourself choosing a car
from a lot of say 20 cars standing for sale.
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1. Incompleteness and noise in model specification.

2. System’s uncertainty about the semantics the user puts into her statements.

3. Language constraints stemming from system’s design decisions.

4. Potential intractability of reasoning about the model on the basis of the user
statements.

The first problem is not at all specific to generalizing-statements-based languages,
and we have already discussed it above3. In contrast, the next three problems are
inherited from the necessity to adopt this or another compact preference specifica-
tion language.

Let us first illustrate the issue of uncertainty in statements’ interpretation. Here
and in what follows, we assume the user provides the system with a qualitative
preference expression

(1)

consisting of a set of preference statements , where are logical
formulas over , , and , , and have the standard semantics
of strong preference, weak preference, and preferential equivalence, respectively.

First, consider an “instance comparison” statement “ is better than ”, where
. The interpretation of this statement poses no serious difficulties be-

cause it explicitly compares between complete descriptions of two alternatives.
However, this is the exception, rather than the rule. Most of the preference state-
ments that we use in our everyday activities (e.g., “I prefer compact cars to SUVs”)
have this or another generalizing nature. As such, these statements typically men-
tion only a subset of attributes. This creates an ambiguity with respect to the actual
referents of these statements. Several proposals on how to interpret generalizing
preference statements have been made both in philosophy and AI. However, there
is no agreed-upon solution to this problem (e.g., see [5, 22, 27]), and the inherent
uncertainty about the message that such a statement aims to communicate makes
developing such a solution very questionable. Having said that, different existing
proposals are not entirely tangential. Specifically, all these proposals suggest to in-
terpret generalizing preference statements as indirectly comparing between sets of
alternatives from , while possibly disagreeing on what what sets of alternatives
are actually compared by each statement separately, and/or by a multi-statement
preference expression as a whole.4

Next, as if interpreting preference statements over is not complicated enough
already, note that

3A very thorough overview of lessons learnt on this matter in psychology and philosophical logic
can be found, e.g., in [28].

4For an excellent survey of this topic, we refer the reader to [28].
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The attributes and their domains effectively constitute themaximal alpha-
bet for any language that can be used to provide the system with an informa-
tion about . In particular, the users have to communicate their preferences
to the system also only in terms of .

The attribution is typically fixed by the system to be used by all its users.
Moreover, this attribution typically serves various components of the sys-
tem, and often the attribution is selected to optimize system components
other than this dealing with reasoning about user preferences. (This situa-
tion is typical to the choice of schema attributes of most database systems.)

The attribution is just one out of many possible attributions of the physical
alternatives , and as such it does not necessarily correspond to the criteria
affecting preferences of a user over .

To stress the latter point, suppose that a used-cars catalog maintains in its records
the model and the color of the cars as a pair of attributes . Suppose
that a user of the system likes Porsche Cayenne, likes green color, and yet strongly
dislikes green Porsche Cayenne, providing a statement capturing the latter piece of
information. In this case, the user articulates her preferences over a combination
of a particular pair of values of and , and no single attribute directly main-
tained by the system captures this preference-related criterion. On the positive
side, however, if the user does articulate some preference information in terms of

, then the implicit preference-related criteria behind this information obviously
have some encoding in terms of (as it in fact happens in this “green Porsche
Cayenne” example).

3. Independence-based Preference Modeling

Probably one of the best-known instantiations of the general scheme as in Fig-
ure 1 these days is this of CP-nets [7], along with its various extensions and deriva-
tives [11, 12, 6, 19, 18, 38, 33, 44, 43]. Here we use this tool for representing and
reasoning about preferences to illustrate both the different elements of the general
scheme, as well as how the problematic issues discussed in the previous section
may pop up in its concrete instantiations.

In terms of Eq. 1, the language underlying CP-nets corresponds to sets of (con-
ditional) preference statements for values of variables ; each statement expresses
user’s preference over a single variable. For instance, in the statement ”if the car is
a sports car, I prefer black to red as its color”, the addressed variable corresponds
to the exterior color of the car. Formally, the expressions supported by CP-nets are

Dom Dom
(2)
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Reasoning about the ordering induced by such an expression on requires a
commitment to a concrete logical interpretation of these natural language state-
ments. While different interpretations are feasible, the CP-nets adopt the ceteris
paribus (all else equal) semantics for statement interpretation [28]. In this con-
servative semantics, a statement “I prefer to ” means that given
any two alternatives that are identical except for the value of , the user prefers
the one assigning to to the one assigning . If these two alternatives differ
on some other attribute as well, then they cannot be compared based on this pref-
erence statement alone. Conditional statements have the same semantics, except
that they are restricted to comparisons between elements that satisfy the condition.
Thus, “I prefer to given that ” is interpreted exactly as
above, but only for objects that satisfy .

The model underlying the CP-nets language is this of strict partial orders.
Clearly, each preference statement as in Eq. 2 induces such a preference ordering
over . The “global” preference (ordering) relation specified by a collection of
such statements (that is, by a CP-net) corresponds to the transitive closure of the
union of these “local” preference relations. If the user provides us with consistent
information about her preferences, then the binary relation induced by the TCP-
net on is a strict partial order. Note that this order is rarely complete, and thus
typically not all pairs of alternatives are comparable with respect to a CP-net.

Having specified the model and the language, we shall now proceed with dis-
cussing reasoning algorithms for various queries with respect to CP-nets. All
these algorithms exploit an intermediate graphical representation of preference
expressions. Given an expression as in Eq. 1, it is represented by an annotated
graph. The nodes of the graph correspond to the attributes and the edges provide
information about direct preferential dependencies between the variables; there is
an edge from to implies that user preference over values of vary with
values of . Each node in a CP-net is annotated with a conditional preference
table (CPT) describing the user’s preference order overDom for every possible
value assignment to the immediate predecessors of (denoted ). Figure 2
depicts a CP-net over four variables—binary , , and ternary . The graph
shows that the preference over values of depends on ’s value, while the pref-
erence over values of depends on the value of both and . Actual preferences
are provided in CPTs. For example, when , we prefer to be false.

The structure of the CP-net graph plays an important role in determining the
consistency of preference specification and in reasoning about preference, although
the user need not be aware of this structure [7]. While not all preference expres-
sions representable as CP-nets are consistent [15], the latter is the case, e.g., for
acyclic CP-nets [7]. Note that the latter property of the CP-nets can be recognized
in time linear in —this is probably the simplest example for queries that can be
efficiently answered, at least for some sub-classes of statements as in Eq. 1.
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Figure 2: A schematic example of a TCP-net.

A more striking illustration of algorithmic exploiting of the structure induced
by the preference expressions comes in processing three other important queries:

optimization—finding a preferentially-optimal alternative from , that is,
finding an alternative such that for any ,

dominance testing—for a pair of given alternatives , determining
whether preference expression entails (denoted as ),
and

ordering—given a subset , order in a non-increasing order of
preference communicated by (that is, if some comes before on this
ordering, then we have ).

In preferential reasoning, all these three queries typically constitute NP-hard
problems [33]. Surprisingly, optimization for acyclic CP-nets can be solved in
time linear in by a simple, top-down traversal of the graph [7]. The situation
with dominance testing is not as sharp—while NP-hard in general even for acyclic
CP-nets, this query still can be answered efficiently for boolean attributes and
certain topologies of the CP-net’s graph [7]. Finally, the situation is most intrigu-
ing with the ordering query. As this query corresponds to sorting a given set of
alternative, and pairwise comparison between alternative is a basic operation of
any sorting procedure, at first view, it seems that ordering is at least as hard as
dominance testing. This, however, is not precisely so. To order a pair of alter-
natives consistently with it is sufficient to know only that or

. Note that this information is weaker than knowing the precise preference
relationship between and with respect to . While obtaining the latter knowl-
edge would unavoidably require answering dominance queries, turns out that (i)
answering its weaker counterpart can be done in time linear in for any acyclic
CP-net over any finite-domain attributes [7], and (ii) this procedure can be used
to sort any set of alternative in time [8].

At the big picture, the CP-nets framework constitutes an instance of direct
logical reasoning about , and, of course, other proposals for such frameworks can
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be found in the literature. More specifically, the CP-nets framework corresponds
to what we call here independence-based methodology, roughly characterized by
the following three steps.

1. One defines certain preferential independence conditions on , and pro-
vides a “representation theorem” stating that under these conditions the
preference model can be compactly specified using certain (hopefully, in-
tuitive) language. Some of such foundational representation theorems come
from the classical works on measurement and multi-criteria decision theo-
ries [31, 29, 23], while some other (e.g., those underlying the CP-nets tool)
come from the research in AI (e.g., see [7, 44, 2]).

2. Next, one possibly defines some additional preferential independence con-
ditions on under which the model is not only compactly specifiable, but
can also be reasoned about efficiently (at least for some queries of interest).

3. Finally, the system poses restrictions on the form of allowable preference
expressions, so that they are constrained to a sufficiently simple language
for which the conditions from above are fulfilled.

Unfortunately, all independence-based methodologies for direct logical rea-
soning about preferences are limited by severe trade-offs between computational
efficiency and semantic expressiveness (i.e., the richness of the supported prefer-
ence expressions) [7, 33, 24, 44]. In attempt to escape these trade-offs as much as
possible at least for optimization and ordering queries, several works in AI (e.g.,
see [4, 10, 9, 25, 34, 36]) suggested compiling the information carried by into
an ordinal utility function

(3)

consistent with (what we believe tells us about) , that is requiring

(4)

The consistency requirement posed on by Eq. 4 says that ordering a set of alter-
natives from in a non-increasing order of values provided to these alternatives
by will never put alternative before alternative if our interpretation of the
user’s expression implies that the user strictly prefers to . The task of con-
structing such a utility function from is called ordinal utility revelation.

Observe that specifying a utility function as in Eq. 3 can be expensive due
to the fact that . Thus, previous works on ordinal utility revela-
tion suggested to stick here as well to the independence-based methodology (e.g.,
see [1, 6, 9, 25, 26, 32, 36]); in case of ordinal utility revelation, the first two steps
of the above methodology are as follows.
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1. One defines certain preferential independence conditions on , and pro-
vides a “representation theorem” stating that under these conditions can
be compactly represented.

2. Next, one possibly defines some additional preferential independence con-
ditions on under which a utility function consistent with is not
only compactly representable, but also can be efficiently generated from

[25, 36, 9].

Considering the first step, note that any function as in Eq. 3 can be repre-
sented in a generalized additive form [23, 1]:

(5)

where each sub-function depends on some subset of variables , and
is the restriction of a complete assignment to the attributes in .

Note that can be selected to be any function that maps a (partial) assignment
to a real value. The generality of Eq. 5 is immediate since we may have
and , which means that one can effectively select a function that
assigns an arbitrary utility to each possible complete assignment .

While by itself this generality of Eq. 5 has no practical implications, Eq. 5
allows us to generalize the core assumptions of previous works on ordinal util-
ity revelation — each concrete instance of the independence-based methodology
corresponds to some independence conditions on that guarantee existence of

(i) satisfying Eq. 4 and (ii) having a compact decomposition in terms of Eq. 5
(that is, defined by a small number of small attribute subsets). An additional key
property of all previous works is that attribute subsets decompos-
ing are assumed to be known to the system.Finally, to our knowledge, all the
works on independence-based ordinal utility revelation (except for the approach
suggested in [26]) assume that the user’s preference expression is consistent, that
is, the user makes no mistakes in specifying her preferences. In practice, however,
this assumption is not necessarily reasonable.

4. Unstructured Preference Modeling

In short, the independence-based methodologies for multi-attribute preference
revelation are parametrized by the structure that user preferences induce on , and
thus are applicable only when such compact structure exists and is known to the
system. In Section 2, however, we have discussed already the limited power of
to provide the “ultimate alphabet” for preference specification. The attributes
do not necessarily correspond to the criteria affecting preference of each individual
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user over , and thus, even if user preferences are compactly structured, they
should not necessarily be compactly structured over .

Having in mind the “lessons learnt” from exploring the independence-based
methodology for a few decades, let us try sketching the “universal instance” of the
general information-processing scheme as in Figure 1. The vision here is threefold.

1. The user should be able to provide preference expressions while being as
little constrained in her language as possible.

2. The preference-model revelation machinery should be completely non-parametric,
that is free of any explicit assumptions about the structure of the user pref-
erence ordering.

3. Both the process of model revelation and reasoning with the revealed model
should be computationally efficient, including the case where user prefer-
ences pose no significant independence structure on whatsoever.

While possibly not formalized precisely this way, this vision is obviously not
new. For instance, while listing open problems in the area, Doyle [20] addresses
the problem of language constraints and fixed attribution, and writes: “Can one
recast the underlying set [of attributed alternatives] in terms of a different span
of dimensions such that the utility function becomes linear? If so, can one find
new linearizing dimensions that also mean something to human interpreters?” The
same questions were considered by Shoham in the scope of his work on utility
distributions [39, 40]. In an attempt to provide a unified view on probabilities and
utilities, Shoham showed that, in principle, such a set of linearizing dimensions
(called, in [39, 40], factors) exist for any utility function, and that this set of di-
mensions may have to be exponentially larger than the original set of attributes.
However, the result of Shoham is more foundational than operational. The con-
nection between the attributes and the particular set of factors proposed in [39, 40]
is not generally natural, and thus it is rather unclear how to perform preference
elicitation with respect to this set of factors. Likewise, no efficient computational
scheme for reasoning about this, potentially very large, set of factors has been
suggested until these days.

It is possible, of course, that the “universal methodology” as above is sim-
ply utopia. Some recent results, however, provide a positive evidence that, at
least getting close to, this utopia is possible. In particular, a recently suggested
by Domshlak and Joachims [16, 17] framework for ordinal utility revelation ap-
pears to satisfy to a large degree all the desiderata of the “universal methodol-
ogy” as above. Connecting some ideas from knowledge representation, machine
learning, and philosophical logic, this frameworks is based on a high-dimensional
preference decomposition, and a specific adaptation of certain standard techniques
for high-dimensional continuous optimization. Here we briefly outline the basic
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knowledge-representation idea underlying this proposal, referring the reader for
details and computational solutions to [17].

Suppose the user provides the system with a preference expression , and the
task of the system to suggest an ordinal utility function satisfying Eq. 3-4. In
general case, the system is not provided with any information about the indepen-
dence structure the user preferences induce on . In fact, the system cannot even
assume that a significant such independence structure on exists. The basic idea
underlying the framework in [17] is simple: If no useful preferential independence
information in the original representation space is provided, the only escape is to
switch to a different space in which no such independence information is required.
But what this “different space” can be?

Assuming here that the attributes are all binary-valued, let us schematically
map the alternatives into a new, higher dimensional space using a certain
mapping

(6)

Specifically, the mapping connections between the dimensions of and as
follows. Let be a labeling of the dimensions of , and

be the union of attribute domains in . Let be a bijective map-
ping from the dimensions of onto the power set of , uniquely associating each
dimension with a subset , and vice versa. Let de-
note the subset of attributes “instantiated” by . For example, if

, then . Given that, for each and
, we set:

(7)

That is, geometrically, maps each -dimensional vector to the -
dimensional vector in that uniquely encodes the set of all projections of onto
the subspaces of .

Considering the semantics of the transformation , recall the pitfalls of the
system-level fixing of the attribution , along with the example of green Porsche
discussed in Section 2. In that example, the user articulates her preferences over
a combination of a particular pair of values of two attributes , and
no single attribute in can directly capture the user’s utility alone. However,
as we also already suggested in Section 2, (i) if such a complex preference is
articulatable in terms of the attributes , then it has to correspond to this or another
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set of value assignments to a subset of , and (ii) the evaluation of any abstracted
alternative with respect to such a complex preference corresponds to a
single value assignment to a subset of , and that is, to a single dimension of
. This means that there are not only dimensions in that capture the utilities

of “Porsche” and “green”, but there is also a dimension that directly captures the
utility of “green Porsche”. This correspondence between complex preferences
and individual dimensions of makes the semantics of very attractive. In
addition, it can be shown that any preference ordering over alternatives can be
captured by a linear real-valued function from (to which the alternatives in
are transformed using .)

Now, let us dedicate a few words to interpretation of preference expressions
suggested in [17]. Assuming here that the referents of the statements in corre-
spond to propositional logic formulas over , consider an arbitrary comparative
statement . Let (and similarly ) be the variables involved
in , and Dom be the set of all ’s models in the subspace of
defined by . For instance, if , and , then

, and . In [17], the statement
is compiled into a set of constraints on the space of (candidate) linear, real-valued
functions from . Specifically, is compiled into a set of
constraints

(8)

where denotes the set of all non-empty value subsets of the local model .
For example, statement (e.g., “It is more important that the
car is powerful or fast than not having had an accident”) is compiled into

(9)

The constraint system resulting from such compilation of a user expression
defines the space of solutions for the framework in [17]. (The reader is re-

ferred to [17] for a thorough discussion on why this approach constitutes a least
committing interpretation of preference statement.) Note, however, that solving
poses numerous complexity issues. First, though this constraint system is linear,
it is linear in the exponential space . Second, the very description size of ,
and, in fact, of each individual constraint in , can be exponential in . Inter-
estingly, Domshlak and Joachims show that these complexity complexity issues
can be overcome by using some duality techniques from optimization theory [3]
and Reproducing Kernel Hilbert Spaces (RKHS) [30, 42, 41]. At the very bottom
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line5, these techniques allow for computing a solution for (corresponding to the
desired ordering function ), and subsequently computing the values of

on without requiring any explicit computation in .

5. Summarizing Discussion

The goal of this paper was mainly to provide a personal perspective of the au-
thor on the way user preferences are (or should be) modeled and reasoned about by
general purpose systems such as these considered by the AI research. One impor-
tant thing implied by this perspective is that the general model/language/algorithms
scheme can be arguably instantiated in lots of ways, and each such proposal will
unavoidably be open for (not less arguable) critique from this or another angle. If
so, then the only real evidence for/against this or another concrete proposal will
have to come from the experience with these proposals in practice. Unfortunately,
here we observe a paradoxical deadlock situation suggesting the “chicken-and-
egg” metaphor.

On the one hand, it is only natural to assume that reasoning about user’s pref-
erence expressions is useful in many applicative domains (e.g., in online catalog
systems). On the other hand, to our knowledge, no application these days allows
its users to express any but trivial (e.g., “bag-of-word”) preference expressions.
It seems that the real-world players wait for the research community to come up
with a concrete suggestion on how natural-language style preference expressions
should be treated, while the research community waits for the real-world to provide
it with the data essential to make the former decision. It is clear that this deadlock
situation should somehow be resolved, and we believe that now this should be a
primary goal for both sides.
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